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Calculation of two-center nuclear attraction integrals over
integer and nonintegern-Slater type orbitals in nonlined-up

coordinate systems
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Two-center nuclear attraction integrals over Slater type orbitals with integer and noninteger
principal quantum numbers in nonlined up coordinate systems have been calculated by means
of formulas in our previous work (T. Özdoğan and M. Orbay, Int. J. Quant. Chem. 87 (2002)
15). The computer results for integer case are in best agreement with the prior literature. On
the other hand, the results for noninteger case are not compared with the literature due to the
scarcity of the literature, but also compared with the limit of integer case and good agreements
are obtained. The proposed algorithm for the calculation of two-center nuclear attraction in-
tegrals over Slater type orbitals with noninteger principal quantum numbers in nonlined-up
coordinate systems permits to avoid the interpolation procedure used to overcome the diffi-
culty introduced by the presence of noninteger principal quantum numbers. Finally, numerical
aspects of the presented formulae are analyzed under wide range of quantum numbers, orbital
exponents and internuclear distances.

KEY WORDS: Slater type orbitals, noninteger principal quantum numbers, nuclear attraction
integrals, rotation coefficients

1. Introduction

Most electronic structure calculations are carried out in an algebraic framework
where the Schrödinger equation, or some approximation thereof, is projected onto a fi-
nite space constructed from a basis of suitable one-particle functions. Slater type orbitals
(STOs) [1] and Gaussian type orbitals (GTOs) [2] are the most common basis functions.

An STO is defined by

χnlm
(
ζ, �r) = (2ζ )n+1/2

√
�(2n+ 1)

rn−1e−ζ rSlm(θ, ϕ), (1)

whereζ is orbital exponent,�(n) is gamma function [3], and the functionsSlm(θ, ϕ) are
complex or real spherical harmonics [4].

However, there are extensive literatures on the evaluation of multicenter integrals
over STOs with integer principal quantum numbers (integern-STOs), it is well-known
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that STOs with noninteger principal quantum numbers (nonintegern-STOs) provide a
more flexible basis for molecular calculations than integern-STOs [5–22]. Also it was
demonstrated unequivocally that nonintegern-STOs are more accurate than are integer
n-STOs and particularly so whend-orbitals are involved. For the detailed discussion
of the use of nonintegern-STOs in molecular calculations the study of Bishop [12] is
advised for reading and wide range of literatures.

Some work was done on multicenter integrals involving nonintegern-STOs by
Geller [10,11], Silverstone [12], Allouche [14], Taylor [15], Mekelleche and Baba-
Ahmed [16–19] with cumbersome algebra. The aim of this work is to calculate two-
center nuclear attraction integrals over integer and nonintegern-STOs in nonlined-up
coordinate systems efficiently since this integral constitute the basic building block in
the calculation of other multicenter integrals when the series expansion formulas for
translation of STOs are used [23].

Atomic units (a.u.) are used from this point onwards.

2. Two-center nuclear attraction integrals over integer and noninteger n-STOs

Two-center nuclear attraction integrals examined in the present work (in nonlined-
up coordinate systems) have the following form:

U
(A)

nlm,n′l′m′
(
ζ, ζ ′; �R, θ, ϕ)=

∫
χ∗nlm

(
ζ, �ra

) 1

ra
χn′l′m′

(
ζ ′, �rb

)
dV, (2)

U
(B)

nlm,n′l′m′
(
ζ, ζ ′; �R, θ, ϕ)=

∫
χ∗nlm

(
ζ, �ra

) 1

rb
χn′ l′m′

(
ζ ′, �rb

)
dV, (3)

where(R, θ, ϕ) are the spherical-polar coordinates of radius vector�R ≡ �Rab = �ra
−�rb, χnlm(ζ, �ra) andχn′l′m′(ζ ′, �rb) are normalized complex or real STOs centered on the
nucleia andb, respectively.

For the calculation of nuclear attraction integrals in nonlined-up coordinate sys-
tems it is need to rotate two-center nuclear attraction integrals from lined-up coordinate
systems to nonlined-up coordinate systems:

U
(A,B)

nlm,n′l′m′
(
ζ, ζ ′; �R, θ, ϕ) =

min(l,l′)∑
λ=0

T λlm,l′m′(θ, ϕ)U
(A,B)

nlλ,n′l′λ
(
ζ, ζ ′; �R), (4)

whereU(A,B)nlλ,n′l′λ are two-center nuclear attraction integrals in lined-up coordinate systems
andT λ

lm,l′m′ are rotation coefficients for two-center one electron integrals defined by

T λlm,l′m′(θ, ϕ)=
2

(1+ δλ0)[(1+ δm0)(1+ δm′0)]1/2

×
∑(2)

i=±

l+l′∑
L=|l−l′|

(2)
(εm0)

δi,ε
mm′Cll

′L
iγ,γ ′,iγ+γ ′C

llL
λ,−λ,0

×
[

2π
(
1+ δMi0

)
2L+ 1

]1/2

SLMi (θ, ϕ) (5)
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in which Cll
′L
mm′M are Clebsch–Gordan coefficients,γ = |m|, γ ′ = |m′| andMi =

εmm′ |iγ + γ ′| andεmm′ = sign(m) · sign(m′). In equation (5), the symbol
∑
(2) indicates

that the summation is to be performed in steps of two. Forγ = γ ′ andεmm′ = −1, terms
with a negative value of indexi (i = −1) contained in equation (5) should be equated
to zero [24].

We have presented recently an algorithm for the evaluation of nuclear attraction
integrals over integer and nonintegern-STOs in lined-up coordinate system, by the use
of ellipsoidal coordinates method, as follows [25,26].

(a) Nuclear attraction integrals over integern-STOs:

U
(A)

nlλ,n′l′λ
(
ζ, ζ ′; �R)

= 2

R
Nnn′(p, t)(−1)l

′−λ∑
k,k′

∑
u,s

akk
′

us

(
lλ, l′λ

)

×
γ−1∑
h=0

Fh
(
n− l + 2k + 2k′ + 2λ− 2u− 1, n′ − l′)Ai(p)Bj(pt), (6)

U
(B)

nlλ,n′l′λ
(
ζ, ζ ′; �R)

= 2

R
Nnn′(p, t)(−1)l

′−λ∑
k,k′

∑
u,s

akk
′

us

(
lλ, l′λ

)

×
γ−1∑
h=0

Fh
(
n− l + 2k + 2k′ + 2λ− 2u, n′ − l′ − 1

)
Ai(p)Bj(pt); (7)

(b) Nuclear attraction integrals over nonintegern-STOs:

U
(A)

nlλ,n′l′λ
(
ζ, ζ ′; �R)

= 2

R
Nnn′(p, t)(−1)l

′−λ∑
k,k′

∑
u,s

akk
′

us

(
lλ, l′λ

)

×
∞∑
h=0

fh
(
n− l + 2k + 2k′ + 2λ− 2u− 1, n′ − l′)Ai(p)Bj(pt), (8)

U
(B)

nlλ,n′l′λ
(
ζ, ζ ′; �R)

= 2

R
Nnn′(p, t)(−1)l

′−λ∑
k,k′

∑
u,s

akk
′

us

(
lλ, l′λ

)

×
∞∑
h=0

fh
(
n− l + 2k + 2k′ + 2λ− 2u, n′ − l′ − 1

)
Ai(p)Bj(pt). (9)
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The parameters contained in equations (6)–(9) are:

p = R(ζ + ζ
′)

2
; t = ζ − ζ

′

ζ + ζ ′ , (10a)

Nnn′(p, t) = [p(1+ t)]
n+1/2[p(1− t)]n′+1/2

√
�(2n+ 1)�(2n′ + 1)

, (10b)

i = (n+ n′)− (l + l′)+ 2
(
k + k′ + λ)− 2u+ s − h− 1, j = h+ s, (10c)

γ = (n+ n′)− (l + l′)+ 2
(
k + k′ + λ)− 2u, (10d)

and the ranges of the indicesk, k′, u ands are as follows:

0� k � E
(
l − λ

2

)
, 0� k′ � E

(
l′ − λ

2

)
, (11a)

0� u �
(
k + k′ + λ), 0� s �

(
l + l′)− 2

(
k + k′ + λ)+ 2u, (11b)

with

E

(
n

2

)
= n

2
− 1

4

(
1− (−1)n

)
. (12)

The functionsakk
′

us (lλ, l
′λ) contained in equations (6)–(9) are the expansion coefficients

for the product of two normalized associated Legendre functions arising in the eval-
uation of multicenter integrals (see appendix for derivation of expansion coefficients
akk

′
us (lλ, l

′λ)):

akk
′

us

(
lλ, l′λ

) = (−1)uFu
(
k + k′ + λ)Fs(l − 2k − λ+ 2u, l′ − 2k′ − λ)CklλCk′l′λ (13)

with

Fm
(
N,N ′

) =
m∑
i,j=0

(−1)N
′−jFi(N)Fj

(
N ′
); Fm(n) = n!

m!(n−m)! , (14)

Cklm =
(−1)k

22k+m

[
2l + 1

2
Fl−k(l +m)Fk+m(l − k)F2k(l −m)Fk(2k)

]1/2

. (15)

The functionFm(N,N ′) is defined for integerN andN ′. In the case of nonintegerN
andN ′, this function takes the formfm(N,N ′) defined by

fm
(
N,N ′

) =
∞∑
σ=0

(−1)σ fm−σ (N)fσ
(
N ′
)
, (16)

in which

fm(N) = (−1)m�(m−N)
m!�(−N) . (17)

The auxiliary functionsAk(p) andBk(pt) involved in equations (6)–(9) are the
well-known Mulliken’s integrals [27] and the numerical implementation of these func-
tions can be found in [28,29].
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3. Computational results and discussions

On the basis of formulae presented in this work and in [25,26] we have constructed
computer programs in Turbo Pascal 7.0 programming language for the evaluation of
two-center nuclear attraction integrals over integer and nonintegern-STOs in nonlined-
up coordinate system by rotating integrals in lined-up coordinate systems. The efficiency
of computer results depends deeply on the accurate calculation of the auxiliary func-
tions Ak, Bk and fm(N,N ′). In our previous paper [28], we have analyzed the best
running range for the auxiliary functionsAk andBk. The auxiliary functionsAk, Bk
andFm(N,N ′), and rotation coefficientsT λlm,l′m′(θ, ϕ) are stored in the memory of the
computer during compilation of the programs and get back from the memory during cal-
culations. This is very memory consuming but very time gaining. The convergence limit
for nuclear attraction integrals over nonintegern-STOs in lined-up coordinate systems is
determined for 18-decimal digit accuracy, with typically at most 20–40 terms in infinite
sums, in the whole calculations.

Numerical results for two-center nuclear attraction integrals over integern-STOs in
nonlined-up coordinate systems are given in table 1. Our computer results for this case
are in best agreement with [30,31], at least for 13-decimal digit accuracy. The computer
results for two-center nuclear attraction integrals over nonintegern-STOs are listed in
table 2 with no comparison due to the scarcity of the literature. But also we have tested
the results for limit of noninteger case with integer case, and good agreement have been
obtained. To the best of our knowledge, the results presented in this work for two-center
nuclear attraction integrals over nonintegern-STOs in nonlined-up coordinate systems
will be the first in the literature.

The numerical performance of the formulas for two-center nuclear attraction in-
tegrals over nonintegern-STOs have been analyzed. As can be seen from figure 1 the
infinite sums in equations (8) and (9) converge rapidly by decreasing internuclear dis-

Figure 1. Convergence of infinite series (8) versus internuclear distances.h denotes the upper limit of
summation indices in equation (8).
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tances. It should be noted that the convergence of these infinite series becomes somewhat
slower as the values oft increase.

Another important aspect of the formulae presented in this work is that two-center
nuclear attraction integrals over integer and nonintegern-STOs is calculated easily in
the case of near or equal values of orbital and magnetic quantum numbers, and also in
the case of high values of principal quantum numbers.

Analyzing two-center nuclear attraction integrals it is observed that two-center one-
electron integrals have the following useful relation which enable us to calculate these
integrals for larger values of internuclear distances or small values of orbital exponents
that computer may give inaccurate results:

Unlm,n′l′m′
(
ζ, ζ ′; �R, θ, ϕ) = Unlm,n′l′m′

(
ζ

2
,
ζ ′

2
;2 �R, θ, ϕ

)
. (18)

The proposed algorithm for the calculation of two-center nuclear attraction inte-
grals over integer and nonintegern-STOs permits to avoid the interpolation procedure
used to overcome the difficulty introduced by the presence of noninteger principal quan-
tum numbers.

Consequently, the formulae presented in this work show good rate of convergence
and great numerical stability under wide range of quantum numbers, orbital exponents
and internuclear distances. Work is in progress for the evaluation of the multicenter
molecular integrals over integer and nonintegern-STOs based on the computer results
for the formulae presented in this work.

Appendix. Derivation of expansion coefficients akk
′

us (lλ, l
′λ)

When dealing with the evaluation of multicenter integrals, the product of two nor-
malized associated Legendre functions is encountered. In this section, we will give the
derivation of expansion coefficientsakk

′
us (lλ, l

′λ) of the product of two normalized asso-
ciated Legendre functions.

Following definition for normalized associated Legendre functions and intercon-
versions between spherical and elliptical coordinates, one can easily write

T lλ,l
′λ(µ, ν) =

∑
k,k′

∑
u,s

akk
′

us

(
lλ, l′λ

) (µν)s

(µ+ ν)l−2(k+k′+λ)+2u(µ− ν)l′ . (A.1)

Here, the expansion coefficients areakk
′

us (lλ, l
′λ):

akk
′

us

(
lλ, l′λ

) = CklλCk′l′λ(−1)uFu
(
k + k′ + λ)Fs(l − 2k − λ+ 2u, l′ − 2k′ − λ), (A.2)

in whichFm(n, n′) are expansion coefficients in

(µ+ ν)n(µ− ν)n′ =
n+n′∑
m=0

Fm
(
n, n′

)
µn+n

′−mνm, (A.3)
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as defined in equation (14). The ranges of the summation indicesk, k′, u ands are given
by equation (11).

The expansion formula given by equation (A.1) can be used in the evaluation of
multicenter multielectron integrals over STOs, and now we are studying on this project,
expecting to attain higher accuracy and speed in the case of near values of orbital and
magnetic quantum numbers.
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